Algorithm for energy-efficient interaction of wireless sensor network nodes
Annotation
The actual problem of developing methods of interaction in wireless sensor networks focused on energy saving is discussed. It is shown that the operation of a wireless sensor network is built taking into account compromise mechanisms that make it possible to extend the life of the network in the presence of low-power sensor nodes on which the network is built. It is concluded that it is necessary to introduce new algorithms into the operation of wireless sensor networks, which make it possible to reduce the number of operations when calculating a route, transmitting data, or other operations without losing functionality, but contributing to a reduction in energy consumption. The paper proposes one of such algorithms that develops the idea of clustering wireless sensor networks in order to reduce the power consumption of sensor nodes by transferring some of the functions to the head nodes of the clusters. Unlike the well-known adaptive clustering algorithm with low energy consumption LEACH, the proposed algorithm is based on swarm intelligence and allows choosing not only the head nodes of clusters in the current round of functioning of the wireless sensor network, but also promising nodes that become heads of clusters in subsequent rounds. If we consider that one cycle of the wireless sensor network consists of a certain predetermined number of rounds, then the procedure for searching for cluster heads can be performed not at the beginning of each round, but only at the beginning of each cycle of the wireless sensor network. It is shown that the determination of the heads of wireless sensor network clusters in the future allows to reduce the total energy consumption and thereby increase the duration of the network life cycle. The advantage of adding the bee swarm algorithm to the wireless sensor network clustering procedure is demonstrated in terms of such indicators as the time of death of the first sensor node, the dependence of the number of functioning nodes on the network operation time and the data packet delivery coefficient. The wireless sensor network clustering procedure with the addition of the bee swarm algorithm to select cluster heads for the future can be useful when deploying a wireless sensor network in real applications.
Keywords
Постоянный URL
Articles in current issue
- Dynamic range restrictions influence of the fiber-optic towed seismic streamer on the seismogram quality
- Control of MIMO linear plants with a guarantee for the controlled signals to stay in a given set
- Elliposoidal estimates of trajectory sensitivity of multi-dimensional processes based on generalized singular values problems
- Nonlinear rheological models and their application to describe the mechanical behavior of highly oriented polymer materials
- Research on the effectiveness of noise reduction when encoding a lossless speech signal
- Lightweight approach for malicious domain detection using machine learning
- Cloud computing simulation model with a sporadic mechanism of parallel task solving control
- Methods of local features extraction in person authentication task by face thermographic image
- Classification of short texts using a wave model
- Auxiliary arbitrary waveform generator for fiber optic gyroscope
- Constructing twitter corpus of Iraqi Arabic Dialect (CIAD) for sentiment analysis
- A novel framework for the prevention of black-hole in wireless sensors using hybrid convolution network
- Modern variations of McEliece and Niederreiter cryptosystems
- Lightweight ECC and token based authentication mechanism for WSN-IoT
- Model of the acoustic path of a separatecombined optical-acoustic transducer
- Study on received signal strength of femtocell with circular and rectangular microstrip patch antenna designed at 2.55 GHz
- Whirlpool Hash Mutual Biometric Serpent Authentication (WPHMBSA) for secured data access in cloud environment
- IRDFPR-CMDNN: An energy efficient and reliable routing protocol for improved data transmission in MANET
- Influence investigation of electromagnetic-acoustic transducer parameters on thickness measurement accuracy by numerical modeling methods
- Detection of quadcopter propeller failure by machine learning methods
- Throughput modeling of cellular network systems with spatial precoding
- Visual display system of changes in physiological state for patients with chronic disorders
- Method for discovering spatial arm positions with depth sensor data at low-performance devices